TensorFlow ile Derin Öğrenme Destekli Protez Kontrolü (Python) (Son)

Beyin dalgalarıyla protezi kontrol etmenin yanı sıra, ses komutlarıyla yazı yazabilme yeteneğini de içerir.

📌 Gelişmiş Özellikler:
Beyin dalgalarıyla dirsek ve el hareketlerini kontrol eder (Dirsek bükme, El aç/kapatma).
Sesli komutları kullanarak yazı yazabilir (Google Speech-to-Text API veya Whisper AI kullanılarak).
TensorFlow destekli makine öğrenmesiyle hareketleri kişiselleştirir.


🔹 1. Güncellenmiş Protez Kontrol Kodu (Python)

Bu kod, beyin dalgalarını analiz eder, Arduino ile protezi kontrol eder ve sesli komutlarla yazı yazmayı destekler.

pythonKopyalaDüzenleimport numpy as np
import tensorflow as tf
import serial
import time
import speech_recognition as sr
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from brainflow.board_shim import BoardShim, BrainFlowInputParams, BoardIds
from brainflow.data_filter import DataFilter, FilterTypes

# **1. EEG CİHAZI BAĞLANTISI**
params = BrainFlowInputParams()
params.serial_port = "COM3"
board = BoardShim(BoardIds.CYTON_BOARD.value, params)
board.prepare_session()
board.start_stream()
time.sleep(2)

# **2. ARDUINO BAĞLANTISI**
arduino = serial.Serial('COM5', 115200)

# **3. SES TANIMA (KONUŞMAYI YAZIYA ÇEVİRME)**
recognizer = sr.Recognizer()
def speech_to_text():
    with sr.Microphone() as source:
        print("🎤 Lütfen konuşun...")
        recognizer.adjust_for_ambient_noise(source)
        audio = recognizer.listen(source)

        try:
            text = recognizer.recognize_google(audio, language="tr-TR")
            print(f"✍️ Yazılan: {text}")
            with open("yazi.txt", "a") as file:
                file.write(text + "\n")
        except sr.UnknownValueError:
            print("❌ Ses anlaşılamadı.")
        except sr.RequestError:
            print("⚠️ Google API'ye ulaşılamadı.")

# **4. DERİN ÖĞRENME MODELİ (LSTM) OLUŞTURMA & YÜKLEME**
try:
    model = tf.keras.models.load_model("eeg_protez_lstm_model.h5")
    print("📌 Model yüklendi!")
except:
    model = Sequential([
        LSTM(50, return_sequences=True, input_shape=(10, 2)),
        Dropout(0.2),
        LSTM(50),
        Dense(25, activation='relu'),
        Dense(4, activation='softmax')  # 4 Çıktı: [Dur, Dirsek Bük, El Aç/Kapa, Yazı Yaz]
    ])
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    print("⚠️ Yeni model oluşturuldu!")

# **5. EEG VERİLERİNİN ALINMASI & İŞLENMESİ**
def get_eeg_features():
    data = board.get_board_data()
    eeg_channels = BoardShim.get_eeg_channels(BoardIds.CYTON_BOARD.value)
    
    alpha_waves, beta_waves = [], []
    for ch in eeg_channels:
        DataFilter.detrend(data[ch], 3)
        DataFilter.perform_bandpass(data[ch], 250, 8.0, 12.0, 4, FilterTypes.BUTTERWORTH.value, 0)
        DataFilter.perform_bandpass(data[ch], 250, 12.0, 30.0, 4, FilterTypes.BUTTERWORTH.value, 0)

        alpha_waves.append(np.mean(data[ch]))
        beta_waves.append(np.mean(data[ch]))

    return [np.mean(alpha_waves), np.mean(beta_waves)]

# **6. MODELİN ÖĞRENMESİ & PROTEZİ KONTROL ETMESİ**
sequence_data = []
def train_and_control():
    global sequence_data

    training_data = []
    labels = []

    while True:
        alpha, beta = get_eeg_features()
        print(f"Alpha: {alpha}, Beta: {beta}")

        sequence_data.append([alpha, beta])
        if len(sequence_data) > 10:
            sequence_data.pop(0)

        if len(sequence_data) == 10:
            input_data = np.expand_dims(sequence_data, axis=0)
            prediction = model.predict(input_data)[0]
            command = np.argmax(prediction)  # 0 = Dur, 1 = Dirsek Bük, 2 = El Aç/Kapa, 3 = Yazı Yaz

            if command == 1:
                print("📌 Komut: DİRSEĞİ BÜK!")
                arduino.write(b'1')
                training_data.append(sequence_data)
                labels.append([0, 1, 0, 0])
            elif command == 2:
                print("📌 Komut: ELİ AÇ/KAPA!")
                arduino.write(b'2')
                training_data.append(sequence_data)
                labels.append([0, 0, 1, 0])
            elif command == 3:
                print("📌 Komut: YAZI YAZ!")
                speech_to_text()
                training_data.append(sequence_data)
                labels.append([0, 0, 0, 1])
            else:
                print("📌 Komut: DUR!")
                arduino.write(b'0')
                training_data.append(sequence_data)
                labels.append([1, 0, 0, 0])

        if len(training_data) > 100:
            x_train = np.array(training_data)
            y_train = np.array(labels)
            model.fit(x_train, y_train, epochs=5, batch_size=8, verbose=1)
            model.save("eeg_protez_lstm_model.h5")
            print("✅ Model eğitildi ve kaydedildi!")
            training_data, labels = [], []

# **7. BAŞLAT**
train_and_control()

🔹 2. Arduino Kodu (Protezi Hareket Ettirme)

Bu kod, dirsek bükme, el açma/kapatma ve yazı yazma komutlarını Arduino üzerinden yönetir.

cppKopyalaDüzenle#include <Servo.h>

Servo dirsek_motor;
Servo el_motor;

void setup() {
    Serial.begin(115200);
    dirsek_motor.attach(9);
    el_motor.attach(10);
}

void loop() {
    if (Serial.available() > 0) {
        char command = Serial.read();

        if (command == '1') {
            Serial.println("📌 Dirsek Bükülüyor...");
            dirsek_motor.write(90);
        } 
        else if (command == '2') {
            Serial.println("📌 El Açılıyor/Kapanıyor...");
            el_motor.write(180);
            delay(500);
            el_motor.write(0);
        } 
        else if (command == '0') {
            Serial.println("📌 Dur...");
            dirsek_motor.write(0);
            el_motor.write(0);
        }
    }
}

🔹 Sonuç

📌 Protezi beyin dalgalarıyla kontrol etmekle kalmayıp, ses komutlarını kullanarak yazı yazma yeteneği ekledik!
📌 Makine öğrenmesi ile kişiselleştirme yaparak kullanıcının komutlarını daha iyi algılamasını sağladık.
📌 Bu sistem, felçli veya uzvunu kaybetmiş bireyler için büyük bir kolaylık sunar.

🔹 Geliştirme Fikirleri:
Robotik Parmak Hareketleri ekleyerek yazı yazma hızını artırabiliriz.
Daha fazla EEG kanalını işleyerek karmaşık komutları (örneğin fare hareketi gibi) destekleyebiliriz

  • Gönderiler/Makaleler/Tezler

    Yapay Zeka Destekli Konteyner Kontrolü:

    UNODC CCP Modelinin Geliştirilmesinde Makine Öğrenmesi Yaklaşımlarının Rolü ÖzetKüresel ticaretin %90’ından fazlası denizyolu ile gerçekleştirilmektedir. Bu büyük hacimli tücaret trafiği, suç örgütleri tarafından yasa dışı malların (uyuşturucu, silah, sahte ürünler,…

    UNODC Container Control Programme (CCP): Küresel Ticaretin Güvenliği İçin Stratejik Bir Model

    Özet Uluslararası ticaretin önemli bir bölümünün konteyner taşımacılığıyla yürütülmesi, limanlar ve sınır kapılarını yasa dışı ticaret faaliyetleri açısından kritik noktalar haline getirmiştir. Bu bağlamda, Birleşmiş Milletler Uyuşturucu ve Suç Ofisi…

    Bir yanıt yazın

    E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

    Neler Kaçırdın?

    Yapay Zeka Destekli Konteyner Kontrolü:

    • By admin
    • Nisan 17, 2025
    • 11 views
    Yapay Zeka Destekli Konteyner Kontrolü:

    UNODC Container Control Programme (CCP): Küresel Ticaretin Güvenliği İçin Stratejik Bir Model

    • By admin
    • Nisan 17, 2025
    • 11 views
    UNODC Container Control Programme (CCP): Küresel Ticaretin Güvenliği İçin Stratejik Bir Model

    Uyuşturucu ve Silah Kaçakçılığı: Uluslararası Güvenlik Açısından Küresel Bir Tehdit

    • By admin
    • Nisan 17, 2025
    • 17 views
    Uyuşturucu ve Silah Kaçakçılığı: Uluslararası Güvenlik Açısından Küresel Bir Tehdit

    Trump: Amerika’nın Çöküşünü mü Tetikleyecek, Yoksa Onu Tekrar İstikrarlı Bir Güce mi Dönüştürecek?

    • By admin
    • Nisan 17, 2025
    • 22 views
    Trump: Amerika’nın Çöküşünü mü Tetikleyecek, Yoksa Onu Tekrar İstikrarlı Bir Güce mi Dönüştürecek?

    ÇİN / TAYVAN SORUNU

    • By admin
    • Nisan 17, 2025
    • 29 views
    ÇİN / TAYVAN SORUNU

    AMD Instinct MI300X: Yapay Zekâ ve HPC için Yeni Nesil Hızlandırıcı

    • By admin
    • Nisan 9, 2025
    • 69 views
    AMD Instinct MI300X: Yapay Zekâ ve HPC için Yeni Nesil Hızlandırıcı